Dynamics of cavitation-structure interaction 
期刊名称Acta Mechanica Sinica
作者Guoyu Wang; Qin Wu; Biao Huang
摘要Cavitation-structure interaction has become one of the major issues for most engineering applications. The present work reviews recent progress made toward developing experimental and numerical investigation for unsteady turbulent cavitating flow and cavitation-structure interaction. The goal of our overall efforts is to (1) summarize the progress made in the experimental and numerical modeling and approaches for unsteady cavitating flow and cavitation-structure interaction, (2) discuss the global multiphase structures for different cavitation regimes, with special emphasis on the unsteady development of cloud cavitation and corresponding cavitating flow-induced vibrations, with a high-speed visualization system and a structural vibration measurement system, as well as a simultaneous sampling system, (3) improve the understanding of the hydroelastic response in cavitating flows via combined physical and numerical analysis, with particular emphasis on the interaction between unsteady cavitation development and structural deformations. Issues including unsteady cavitating flow structures and cavitation-structure interaction mechanism are discussed.
关键词Cavitation-structure interaction; Unsteady cavitating flows; Cavitating flow-induced vibration; Hydroelastic response
参考文献1. Brennen, C. E.:Cavitation and Bubble Dynamics. Oxford Engineering and Sciences Series, vol. 44. Oxford University Press, Oxford (1995)
2. Knapp, R. T., Daily, J. W., Hammitt, F. G.:Cavitation. McGraw Hill, New York (1970)
3. Ji, B., Wang, J., Luo, X., et al.:Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J. Mech. Sci. Technol. 30, 2507-2514 (2016)  
4. Wang, Y., Wu, X., Huang, C., et al.:Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile. Int. J. Multiph. Flow 85, 48-56 (2016)  
5. Chen, Y., Chen, X., Li, J., et al.:Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Eng. 129, 1-19 (2017)  
6. Rood, E. P.:Review-mechanisms of cavitation inception. J. Fluids Eng. 113, 163-175 (1991)  
7. Kawanami, Y., Kato, H., Yamauchi, H., et al.:Mechanism and control of cloud cavitations. ASME J. Fluids Eng. 119, 788-794 (1997)  
8. Laberteaux, K. R., Ceccio, S. L.:Partial cavity flows. Part 1:Cavities forming on models without spanwise variation. ASME J. Fluid Mech. 431, 1-41 (2002)
9. Delange, D. F., Debruin, G. J.:Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality. Appl. Sci. Res. 58, 91-114 (1997)  
10. Kubota, A., Kato, H., Yamaguchi, H., et al.:Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. ASME J. Fluids Eng. 111, 204-210 (1989)  
11. Callenaere, M., Franc, J. P., Michel, J. M., et al.:The cavitation instability induced by the development of a re-entrant jet. ASME J. Fluid Mech. 444, 233-256 (2001)
12. Kawakami, D. T., Fuji, A., Tsujimoto, Y., et al.:An assessment of the influence of cavitation instabilities. J. Fluids Eng. 130, 1-8 (2008)
13. Li, C. Y., Ceccio, S. L.:Interaction of single travelling bubbles with the boundary layer and attached cavitation. J. Fluid Mech. 322, 329-353 (1996)  
14. Arndt, R. E. A., Song, C. C. S.:Instability of partial cavitation:a numerical/experimental approach. In:Proceedings of TwentyThird Symposium on Naval Hydrodynamics, Valde Reuil, France (2000)
15. Li, X., Wang, G., Yu, Z., et al.:Multiphase fluid dynamics and transport processes of low capillary number cavitating flows. Acta. Mech. Sin. 25, 161-172 (2009)  
16. Ausoni, P., Farhat, M., Escaler, X., et al.:Cavitation influence on von Karman vortex shedding and induced hydrofoil vibrations. ASME J. Fluid Eng. 129, 966-973 (2007)  
17. Gopalan, S., Katz, J.:Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895-911 (2000)  
18. Dang, J., Kuiper, G.:Re-entrant jet modeling of partial cavity flow on three dimensional hydrofoils. ASME J. Fluids Eng. 121, 781-787 (1999)  
19. Dang, J.:Numerical simulation of unsteady partial cavity flows.[Ph. D. Thesis], Technical University of Delft, Netherlands (2000)
20. Foeth, E. J.:The structure of three-dimensional sheet cavitation.[Ph. D. Thesis], Delft University of Technology, Delft, Netherlands (2008)
21. Foeth, E. J., Van Terwisga, T., Van Doone, C.:On the collapse structure of an attached cavity on a three-dimensional hydrofoil. ASME J. Fluids Eng. 130, 071303 (2008)  
22. Tseng, C., Shyy, W.:Modeling for isothermal and cryogenic cavitation. Int. J. Heat Mass Trans. 53, 513-525 (2010)  
23. Leroux, J. -B., Astolfi, J. A., Billard, J. Y.:An experimental study of unsteady partial cavitation. J. Fluids Eng. 126, 94-101 (2004)  
24. Peng, X. X., Ji, B., Cao, Y. T., et al.:Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 79, 10-22 (2016)  
25. Senocak, I., Shyy, W.:Evaluation of cavitation models for Navier-Stokes computations. In:Proceedings of FEDSM'02, ASME 2002 Fluids Engineering Division Summer Meeting Montreal, Quebec, Canada (2002)
26. Senocak, I., Shyy, W.:Interfacial dynamics-based modeling of turbulent cavitating flows. Part-1:Model development and steadystate computations. Int. J. Numer. Methods Fluids 44, 975-995 (2004)  
27. Senocak, I., Shyy, W.:Interfacial dynamics-based modeling of turbulent cavitating flows. Part-2:Time-dependent computations. Int. J. Numer. Methods Fluids 44, 997-1016 (2004)
28. Kim, S., Brewton, S.:A multiphase approach to turbulent cavitating flows. In:Proceedings of 27th Symposium on Naval Hydrodynamics, Seoul, Korea (2008)
29. Zhao, Y., Wang, G., Huang, B.:A cavitation model for computations of unsteady cavitating flows. Acta. Mech. Sin. 32, 1-11 (2016)  
30. Hu, C., Wang, G., Chen, G., et al.:A modified PANS model for computations of unsteady turbulence for cavitating flows. Sci. China Phys. Mech. Astron. 57, 1967-1976 (2014)  
31. Chen, Y., Heister, S. D.:Modeling hydrodynamic non-equilibrium in cavitating flows. ASME J. Fluids Eng. 118, 172-178 (1996)  
32. Kubota, A., Kato, H., Yamaguchi, H.:A new modeling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section. ASME J. Fluid Mech. 240, 59-96 (1992)  
33. Kunz, R. F., Boger, D. A., Stinebring, D. R., et al.:A preconditioned Navier-Stokes method for two phase flows with application to cavitation prediction. Comput. Fluids 29, 849-875 (2000)  
34. Singhal, A. K., Athavale, M. M., Li, H., et al.:Mathematical basis and validation of the full cavitation model. ASME J. Fluids Eng. 124, 617-624 (2002)  
35. Delannoy, Y., Kueny, J. L.:Two phase flow approach in unsteady cavitation modeling. In:Proceedings of the Spring Meeting of the Fluids Engineering Division, 153-158 (1990)
36. Wang, G., Ostoja-Starzewski, M.:Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl. Math. Model. 31, 417-447 (2007)  
37. Merkle, C. L., Feng, J., Buelow, P. E. O.:Computational modeling of sheet cavitations. In:Proceedings of Third International Symposium on Cavitation, Grenoble, France (1998)
38. Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J. L.:Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitations. ASME J. Fluids Eng. 125, 38-45 (2003)  
39. Kinzel, M. P., Lindau, J. W., Peltier, L. J., et al.:Detached-eddy simulations for cavitating flows. AIAA, 2007-4098 (2007)
40. Wu, J., Wang, G., Shyy, W.:Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models. Int. J. Numer. Methods Fluids 49, 739-761 (2005)  
41. Reboud, J. L., Stutz, B., Coutier-Delgosha, O.:Two phase flow structure of cavitation:experiment and modeling of unsteady effects. In:Proceedings of the Third Symposium on Cavitation, Grenoble, France (1998)
42. Huang, B., Wang, G., Yu, Z., et al.:Detached-eddy simulation for time-dependent turbulent cavitating flows. Chin. J. Mech. Eng. 25, 484-490 (2012)  
43. Johansen, S. T., Wu, J., Shyy, W.:Filter-based unsteady RANS computations. Int. J. Heat Fluid Flow 25, 10-21 (2004)  
44. Song, M. T., Xu, L. H., Peng, X. X., et al.:An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int. J. Multiph. Flow 90, 79-87 (2017)  
45. Arndt, R. E. A., Pennings, P., Bosschers, J., et al.:The singing vortex. Interface Focus 5, 1-11 (2015)
46. Wang, Y. W., Liao, L. J., Du, T. Z., et al.:A study on the collapse of cavitation bubble surrounding the underwater-launched projectile and its fluid-structure coupling effects. Ocean Eng. 84, 228-236 (2014)  
47. Chae, E. J.:Dynamic Response and Stability of Flexible Hydrofoils in Incompressible and Viscous Flow.[Ph. D. Thesis], University of Michigan, Ann Arbor, America (2015)
48. Luo, X., Ji, B., Tsujimoto, Y.:A review of cavitation in hydraulic machinery. J. Hydrodyn. Ser. B 28, 335-358 (2016)  
49. Zobeiri, A., Ausoni, P., Avellan, F., et al.:How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. J. Fluids Struct. 32, 78-89 (2012)  
50. Ji, B., Luo, X. W., Arndt, R. E. A., et al.:Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction. Ocean Eng. 87, 64-77 (2014)  
51. Chen, G., Wang, G., Hu, C., et al.:Combined experimental and computational investigation of cav
基金项目The project was supported by the National Natural Science Foundation of China (Grant 51679005), the Natural Science Foundation of Beijing Municipality (Grant 3172029), and the Ph. D. Programs Foundation of Ministry of Education of China (Grant 20131101120014).
作者地址1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:62559588  传真:62559588  电子邮箱: js@cstam.org.cn
总访问量: 279